Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Case Rep Neurol ; 14(3): 429-432, 2022.
Article in English | MEDLINE | ID: covidwho-2113167

ABSTRACT

Rhabdomyolysis is an acute disruption in skeletal muscle integrity, leading to the rapid release of 4 muscle contents into the bloodstream, such as creatine kinase (CK). It can have various causes, including infections. Throughout the pandemic, multiple cases of rhabdomyolysis following COVID-19 infections have been reported. However, rhabdomyolysis subsequent to COVID-19 vaccinations appears to be relatively rare. Here, we report such a case after a second COVID-19 Comirnaty (BioNTech/Pfizer) vaccination. Our patient developed rhabdomyolysis 1 day after the second Comirnaty vaccination with high creatine kinase (CK) levels, generalized weakness, and kidney failure. CK levels and muscle weakness resolved after treatment with intravenous fluids, but unfortunately, he remained hemodialysis dependent after discharge. To our knowledge, this is one of the first case reports describing a patient with rhabdomyolysis after a Comirnaty vaccination. However, as millions of people have received the Comirnaty vaccine, it is unclear whether the rhabdomyolysis in our patient is a rare side effect or an unrelated, coincidental event. Large observational studies are needed to elucidate the causality between the Comirnaty vaccination and rhabdomyolysis. Awareness is warranted in patients with myalgia and muscle weakness shortly after COVID-19 vaccination, in order to initiate treatment early and prevent life-threatening complications.

2.
J Thromb Haemost ; 20(12): 2887-2895, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2038139

ABSTRACT

BACKGROUND: COVID-19 vaccination has been associated with increased venous thromboembolism (VTE) risk. However, it is unknown whether genetic predisposition to VTE is associated with an increased risk of thrombosis following vaccination. METHODS: Using data from the UK Biobank, which contains in-depth genotyping and linked vaccination and health outcomes information, we generated a polygenic risk score (PRS) using 299 genetic variants. We prospectively assessed associations between PRS and incident VTE immediately after first- and the second-dose vaccination and among historical unvaccinated cohorts during the pre- and early pandemic. We estimated hazard ratios (HR) for PRS-VTE associations using Cox models. RESULTS: Of 359 310 individuals receiving one dose of a COVID-19 vaccine, 160 327 (44.6%) were males, and the mean age at the vaccination date was 69.05 (standard deviation [SD] 8.04) years. After 28- and 90-days' follow-up, 88 and 299 individuals developed VTE, respectively, equivalent to an incidence rate of 0.88 (95% confidence interval [CI] 0.70-1.08) and 0.92 (0.82-1.04) per 100 000 person-days. The PRS was significantly associated with a higher risk of VTE (HR per 1 SD increase in PRS, 1.41 (1.15-1.73) in 28 days and 1.36 (1.22-1.52) in 90 days). Similar associations were found in the historical unvaccinated cohorts. CONCLUSIONS: The strength of genetic susceptibility with post-COVID-19-vaccination VTE is similar to that seen in historical data. Additionally, the observed PRS-VTE associations were equivalent for adenovirus- and mRNA-based vaccines. These findings suggest that, at the population level, the VTE that occurred after the COVID-19 vaccination has a similar genetic etiology to the conventional VTE.


Subject(s)
COVID-19 Vaccines , COVID-19 , Venous Thromboembolism , Aged , Female , Humans , Male , Middle Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Genetic Predisposition to Disease , Risk Factors , Vaccination/adverse effects , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology
SELECTION OF CITATIONS
SEARCH DETAIL